DOCUMENT ERESUME

ED 033 868 SE 007 681

TITLE Introducticn to an Algorithmic Language
(Basic).

INSTITUTIICN National Council of Teachers of
Mathematics, Inc., Washington, L.C.

Puk Date 68

Note £3r.

Available frcm Naticnal Ccuncil of Teachers of
Mathematics, 1207 Sixteenth Street, N.W.,
ashington, L[.C. 20036

EDRS Frice ECES Frice MF-$0.2t5 HC Not Availalle frem
EDERS.
Descrigptors *Computer Assisted Instructicn, *Computer

Science, Develcpment, Instructicn,
Instructional Materials, Matheratics,
*Mathematics Educaticn, *Prcklem Solving

Abstract

This tcoklet was written to help the
mathematics teacher introduce ccmputers through an easy,
proklem-criented language. In Secticn I, a Frcblem is
selected and solved in a manner that builds up the use of
the language. In Secticn II, the language is aprlied to
three sangple rrchlems to illustrate further the Frogramming
techniques presented in Secticn I. These prcblems
illustrate three different mathematical settings that lend
themselves tc ccmputer analysis. The first is frcm number
thecry and forces the student to recall precise definiticns
of certain key mathematical ccncepts in crder tc write the
hecessary ccmputer prcgram. The second is a proklem frecm
advanced algekra. The last is from the area cf statistics
and rerresents a useful program for students (cr teachers)
for analyzing data. Related exercises fcr the reader are
given at the end of each sample proklem. (EP)

AT LT T Lo Ao o T g A i X ST o e o e T T O -
.- - Py

5
.
.

b

i
i
i] 2z
= 52 :
OR5 ,
! . 5 S W |
) = |
She . |
\§ oy
w £ 5
B O
QoA .
. SOF
vy
— ’ e . e e e e x5

"PERMIS S ION TO REPRODUCE THIS COPYR IGHTED
M¢ERIAL BY MICROF ICHE ONLY HAS BEEN GRANTED
BY Nat.—Council Teach. Mat]
TO ERIC AND ORGANIZATIONS OPERATING UNDER
AGREEMENTS WITH THE U. S. OFFICE OF EDUCATION.
FURTHER REPRODUCTION OUTSIDE THE ERIC SYSTEM
REQUIRES PERMISSION OF THE COPYR IGHT OWNER. "

Copyright © 1968
The National Council of
Teachers of Mathematics, Inc.

All Rights Reserved

Printed in the United States of America

| Computer-oriented ~ Robert L. Albrecht * Sylvia Charp

o Mathematics David C. Johnson * Bruce E. Meserve

F Committee John O. Parker ¢ Dina Gladys S. Thomas
William F. Atchison (Chairman)

Library of Congress
Catalog Card Number
68-26706

T .

Section 1

Section 11

Table of ;Cﬂ;?ntents

O G WD =

11

14
16
16

17

17
19
21
22
23
24
25
26
27
30
32
32
34
36

37
39
41

——

Introduction

Introducing BASIC

INTRODUCTORY PROBLEM
Program A
Program B,
Program B,
Program B,
Program C
Program D,
Program D,
Program D,
Program D,
Exercises

Sample Problems and Exercises

ProsLEM 1—Divisors of a Positive Integer
Program E,

Program E,

Program E,

Program F,

Exercises

PrOBLEM 2—Maximizing an Area

Program G,

Program G,

Progl'am C:;

Exercises

ProBLEM 3—Mean and Standard Deviation
Program H

Exercises

Epilogue
Bibliography
Answers to Exercises

iii

OMPUTERS have great promise as a tool in the teaching of mathe-

matics. Many applications of the computer as a tool for learning
through problem solving have been found, and many programs in com-
puter education are in existence throughout the United States. It can be
anticipated that the use of computers will become an integral part of the
secondary school mathematics curriculum. Indeed, such is already the
case in many school systems.

This booklet aims to help the mathematics teacher introduce com-
puters through an easy, problem-oriented language. In Section I a
problem is selected and solved in a manner that builds up the use of the
language. The statements of the language are few in number and can
be clearly understood and readily learned. Then in Section II the lan-
guage is applied to three additional mathematics problems.

All the problems in the booklet can be solved on any computer that
can accept the language called “BASIC.” It is expected that more and
more computer facilities will make BASIC available to users. For facili-
ties that do not accept this language, transfer to other usable languages
is not difficult. After students are introduced to concepts of pro-
gramming and can produce logical solutions to problems, the language
becomes secondary. The knowledge transfer to other languages is very
high.

ducing BASIC

‘N INTRODUCING the programming language BASIC, a reasonable

, approach is to consider an elementary but interesting mathematical
setting. One interesting problem for the application of computers is to
develop a computer algorithm for finding a good approximation to
v/n for n > 0—in computer typography, to /N for N > =0,

; Introductory Problem

Normally, a satisfactory approach to a problem such as this is to
consider first a special case for N, say 7. We will write a computer pro-
i;a_m to enable us to use the computer to find a good approximation to
" 7.
| A note describing a computer program is appropriate here. A
| program is simply an ordered sequence of statements or steps. For
L example, if you were to write out the rules of the traditional steps for
long division, this could be thought of as a program even though it is
not a formal computer program.
‘ In writing computer programs it is necessary to use a language or
i vocabulary that a particular computer “understands.” There are many
computer languages. In this booklet we have selected one language,
5 BASIC, over the others because of the small number of commands needed,
: its easy application in solving problems, and its practicality in our evolv-
{ 7 ing educational setting. At the present time there are many languages
with much more extensive commercial use than BASIC. For example,
FORTRAN and ALGOL are such languages.

Now back to our initial problem—how to use the computer to find

T e T TSRS TSR T A e m T

1

9 / INTRODUCTION TO AN ALGORITIMIC LANGUAGE

A/7. Our first programs will involve very few programming statements
and hence will be easy to write. Then, since these programs will be in-
efficient in their use of the machine, we will attempt to utilize more of
the elementary BASIC language statements to write “better” programs.
The improved programs will introduce you to additional statements of
BASIC, and the sequence of program development should suggest a
technique appropriate for teaching other mathematical topics with a
computer. The ability to develop a general algorithm is, in fact, one of
the broad goals of mathematics education and is considered by many
to be the highest level of problem solving.

Before approaching the given problem a brief review note is neces-
sary: A positive number X is the square root of N if x* = N. Using this
notion, we can start with our first computer program. Initially we shall
use the computer as a computational device, similar to a calculator. In
the language BASIC the computer can be instructed to do computations
within a statement called @ PRINT statement. A sample program will
help here. A preliminary estimate by mental arithmetic indicates that
+/7 is between 2 and 3 and is in fact greater than 2.5, since (2.5)% == 6.25.
Thus consider 2.6 as an approximation to A/7. One way to check the ac-
curacy of this approximation is to square 9.6. The following BASIC
program tells the computer to do this computation and print the result.

Program A

1 priNT 2.6 * 2.6 This command, or statement, instructs the com-
puter to compute and then print the result of
multiplying 2.6 by 2.6. (Note that the symbol *
is used for multiplication and stands for “times,”
so that 2.6 * 2.6 means “2.6 times 2.6.”) The
symbols for addition and subtraction are the
usual ones, namely, - and —. A slash, /, is used
for division. The notation for an exponent is a
vertical arrow; for example, 26 T 2 means “2.6
squared.” Thus Statement 1 could be written,
alternatively, as “1 print 2.6 1 2.

2 END This statement tells the machine that this is all
there is to this program. All programs in BASIC
must end with an END statement.

RUN After a program has been read into the computer
the operator types RuN when he wishes the com-
puter to execute that program.

One further note about our first program is in order. You will have

InTrRODUCING BASIC / 3

noticed that each program statement, up to and including Enp, has a
number in front of it. These numbers tell the computer the order in
which the statements are to be executed—and this is always done from
smallest to largest. The Enp statement must always have the largest pro-
gram number. The numbers in our program did not have to be 1 and 2;
they might better have been 10 and 20, Using these numbers would have
enabled us to insert steps in between, if necessary, merely by calling the
new steps 15, 17, ete. The steps can be typed in any order in the program,
since the computer will always execute in numerical order; that is, the
machine will automatically order the program statements by number.
This is a characteristic of many computer languages.

Now let us consider the output or “printout” from the computer for
our first program. This is given below. (Each program written in this
section will be repeated when the computer output is given for your

information. In addition, the programming statements introduced up to
that point will be listed.)

Program A
1 prINT 2.6 * 2.6

2 END

RUN

Output

6.76

BASIC programming statements introduced thus far: PRINT . . . and END

The approximation of 2.6 appears to be a reasonable guess, but is
this as good an approximation as we can get? We can repeat the proce-
dure for 2.7 or 2.8, if we wish. What about approximating to hundredths?
Could we write the program to do some further calculations? One handy
feature of the prinT . . . statement is the fact that many different expres-
sions can be evaluated within the same statement, as long as they are sepa-
rated by commas. Thus our next program could look like the following,

Program B,

SPrINT 2.60 1 2, 261 1 2, 2.6212 2631 2, 26412 26512
6 pRINT 2.66 1 2, 2.67 1 2, 26812 2691 2, 2701 2
10 EnD

Note that the two print . . | statements are needed, since each line
must be preceded by a command.

s b bt s e

i e = o e S—" o o+ R -

4 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

The program is repeated helow, and the output is given.

Program B,

5prINT 2.60 1 2,
6 pRINT 2.66 1 2,

10 enp
RUN
Output

6.76 6.8121
7.0756 7.1289

6.8644 6.9169 6.9696 7.0225
71824 7.2361 7.29

BASIC programming statements introduced thus far: PrRINT . . . (with

commas) and END

Note that we have to refer back to our list of calculations in the
given program to determine which x and x* go together. Also, if we were
to repeat this type of calculation for a large number of approximations,
it would get pretty tiresome to keep writing * 2. Since we are squaring
every time, it would be handy to have some way to read a value from a
list and then have a single command that instructs the computer to square
the number. In BASIC we have a pair of commands that enable us to
read data from a list. These are appropriately called the ReaD . . . and
DATA . . . statements. Read the following program and discussion carefully.

Program B,

10 ReAD x

This instructs the computer to find a pATA list
and set x equal to the first value on the list—
in this case, 2.60 would be the first number in the
paTA list. In BASIC any letter or any letter and
a single digit is acceptable for the name of a
variable (hence we could have used s, sl, Q, Q2,
or any other such symbol for a variable).

20 pata 2.60, 2.61, 2.62, 2.63, 2.64, 2.65, 2.66, 2.67, 2.68, 2.69, 2.70

The pATA statement can fall any place in the pro-
gram. This is the list of possible replacements
for x. The computer goes to this list only when
instructed to do so in a READ . . . statement. Other
wise, the computer pays no attention to the state-
ment. For each successive READ . . . command the
computer selects the next piece of data from the
list until out of data, and then the computer

, 30 PRINT X 1 2

40 co To 10

E—

50 END

Program B,
I 10 mEAD x

30 PRINT X 1 2
40 co 1o 10

50 EnD

RUN

Output

6.76
6.8121
6.8644
6.9169
6.9696
7.0225
7.0756
7.1289
7.1824
7.2361
7.29
OUT OF DATA IN 10

-

IntTRODUCING BASIC / 5

automatically goes to ENp—this is a distinct char-
acteristic of BASIC. (Note: The data must be in
decimal or integer form; fractions and radicals
are not accepted.)

This instructs the computer to print the value of
X squared.

At this point it is necessary either to repeat the
earlier reaDp . . . and PRINT . . . instructions or, if
possible, go back in the program and use the
earlier statements over again. We useaco 0. . .
statement to jump from one statement to another
in a program. In our program the co To 10 sends
the computer back to Statement 10, the ReaD
instruction. The computer repeats this process
until out of data in 20 and then goes to END" (the
highest numbered statement).

The above program is repeated below, and the output is given.

20 pata 2.60, 2.61, 2.62, 2.63, 2.64, 2.65, 2.66, 2.67, 2.68, 2.69, 2.70

y‘ n.)\' *

6 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

BASIC programming statemenis introduced thus far: PRINT . .. , END,
READ ..., DATA...,GO TO . ..

There may be some question as to whether program B, is really
better than B;. To illustrate the superiority of the type of program illus-
trated by B,, we need only consider the case of evaluating a polynomial
such as 3x® 4+ x2 — x for successive values of x, say 2.60, 2.61, ..., 2.70.
The PRINT . . . statement for this problem would be a long monster. Try it!
This illustrates the necessity for using variables in our programs.

At this point let us stop and see what we can use the computer to do.
We can actually write a program to instruct the computer to do any
particular computation for a given set of data (as long as we can use an
algebraic form to write the computation to be performed). This is a
useful technique; however, there may be times when we will not want
to print the results of all the computations. For example, in program B:
the computations 2.662, 2.67%, . . . , 2.70° are all unnecessary, since the
A/7 is bounded between 2.64 and 2.65. It would be useful to be able to
have the computer do a calculation for a given value for x and then stop
and let us select a second approximation on the basis of the first results.
For example, if you wished to find V1,433 to the nearest tenth, you
might try 35.0, and then on the basis of the computation of 35.0% you
would try a value larger or smaller. It would be a lot of useless work
to do the calculations of 30.02 up to 40.02 (or some other guessed upper
and lower bounds), stepping by tenths. There is a BASIC statement that
allows the programmer (you) to decide what value you want to substi-
tute for the variable. This is the iNpur . . . command. The following
program shows how the INpuT . . . command can be used in finding /7.

Program B,

10 inpuT X

20 priNT X T 2
30 co 1o 10

40 END

After reading (and storing internally) the program, the computer
stops and waits for the programmer or operator to put in a value for x.
After it receives this value for x, it prints the result of squaring x. And
then what do you think happens? Note the use of the co 10 . . . statement.
Without the ¢o To . . . command in this program the computer would
stop and the program would be completed. Then to do a second ap-
proximation, the programmer would have to start at the beginning of
the program again. In this case, however, the program instructs the

InTRODUCING BASIC / 7

computer to go back to Statement 10. The machine will return to this
instruction and stop and wait for the operator to select another value
for x. The following output shows a running of this program. (The values
to be substituted were arbitrarily selected.)

Program B,

10 iNnPUT X

20 pRINT X T 2
30 co 1o 10
40 END

RUN

Output

? 2.6 The computer typed the question marks. We
6.76 typed the values of x. The computer printed the
? 2.7 values of x2,
7.29
? 2.65
7.0225
? 2.64
6.9696
P 2.645
6.996025
? STOP

BASIC programming statements introduced thus far: PRINT . . . , END,
READ ...,DATA...,GO TO..., INPUT...

Notice that we needed to use an additional comment, stop, in the
actual running of our program. This particular program might run
“forever” unless we tell the computer to stop. We can type one of two
possible words to tell the machine that we have done enough work on
this problem. The word used in the sample running of the program was
stop. After stop it is possible to start the computer on a new program.
The reader should refer to a BASIC manual to familiarize himself with the
actual operation of the teletype and the input capabilities and commands
of the facility. The words run and sTop do not appear in the computer
program but, rather, are used to tell the computer to start or stop. These
are a part of the actual running of the equipment, but they are not con-
sidered a part of the program.

There is one additional advantage in our last program, B, over the
previous ones. Do you see what it isP We also checked 2.6452. We were

8 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

not able to do this in any of our previous programs as they were written.
This would be possible if we revised them to include this particular value.
The mvpuUT . . . statement enables us to make decisions on the basis of the
most recent information and adjust our approximations accordingly. We

are not bound by preconceived ideas.

|

"3
%3
”’.

02000
. @
L%

]

)

l

We now have a very good computer program for approximating
the squaze root of any given number ~n except that the program, while it
enables us to get a good approximation, is quite inefficient. The investi-
gator must sit at the console and actually communicate with the computer,
This presents problems if the computer facility is not immediately ac-
cessible. Also, with this last program, the time spent on-line with the
computer is excessive. Actually, the computer could do hundreds of
calculations just during the time you spend typing in numbers. It would
be valuable if we could have the computer check how close a particular
approximation is and adjust the next trial value accordingly. To do this
we need to have a statement that is referred to as a “decision” command.
In addition, we want the machine then to change the trial value for x by
some predetermined increment. The following program makes use of
these ideas and introduces two more elementary BASIC statements.

Program C

10 LET x = 2.0 The LET . . . command enables us to set some
variable x at a predetermined value. In this case
we arbitrarily selected 2.0.

20 17x 1 2> 7THEN 50

30 LET X =x 4 .1
40 co 10 20

50 prINT X — .1, (x —.

InTRODUCING BASIC / 9

The 1F . . . THEN . . . statement is the “decision”
statement. In BASIC the computer action at this
point is just what is implied. The computer com-
pares the value of x* with 7. If, as in our first
case when x = 2, the value of x squared is not
greater than 7 (that is, it is less than or equal to
7), the computer proceeds with the next step in
the program, 30. If, on the other hand, x squared
is greater than 7, then the computer is told to go
to a particular statement number, in this case 50.
Thus the computer is asked to check a given
condition. If the condition is false, the computer
continues with the program; and if the condition
is true, then the computer goes to the statement
number given in the command. A further note
is necessary: The condition to be checked can in-
volve any one of the symbols that are shown in
the box on page 11, together with those intro-
duced earlier. It is up to the programmer to
decide which condition is of interest.
Statements 30 and 40 illustrate a very interesting
technique. The computer in this situation is told
to replace x by the value x -+ .1. Since x is 2.0
prior to Statement 30, x is changed to 2.1, and
then Statement 40 sends the computer back to
Statement 20 to repeat the comparison of x2 with
7. Note that in Statement 30 we do not have a
true application of the concept of equality.
Rather, the equality symbol can be thought of as
being a symbol for the notion “is replaced by.”
This is a technique that is used in all of the
computer languages. The technique is often re-
ferred to as a “counter.” Note that if the in-
crement on x were 1, and x started at 1, this
would in fact make x equal to 2, 3, 4, and so on,
for each “loop” of the program. (A section of a
program that is repeated a number of times is
referred to as a loop.)

1)1 2,x,x12

When x squared first becomes greater than 7 the
condition x* > 7 in Statement 20 is true, and thus
the computer goes to Statement 50 given in the

10 / INTRODUCTION TO AN ALGORITHMIC LLANGUAGE

THEN . . . part of the condition. In Statement 50
we might have decided to print only x2, but ac-
tually we do not know what the corresponding
value of x is at this point (all the computations
and comparisons have been done in the machine).
Therefore it is desirable to print x also. But what
is true about x and x2P They are the first values
that are too large. Thus it would be useful, for
this program, to print also the last value of x
which still satistied the condition that x? < 7.
Then we can decide which approximation to use
for a specific purpose and whether to seek other
approximations. Program procedures such as this
are actually up to the ingenuity of the pro-
grammer. Care should be taken to be sure that
the computer output is in a readily applicable
and usable form. In this case notice that we have
bounded the true value of /7 to the nearest

tenth.
60 END

The above program is given again, below, and the actual computer
output is shown. The actual running time of the computer for this pro-
gram is such that the final answer is typed almost immediately after the
program has been put into the machine. The calculations are all done
in less than half a second. This program is considerably more efficient

than the previous program, By.

Program C

10 LET x=2.0

20 irx 1t 2> 7 tHEN 50

30 LETx=x -+ .1

40 co 0 20

50 pRINT X — .1, (x —.1) M 2, x 1 2
60 END

RUN

Output
26 676 27 17.29

BASIC programming statements introduced thus far: prinT . . .
READ ..., DATA...,GOTO ..., INPUT...,LET...,IF ..

« THEN . ..

iy g i T U VOV A U

INnTRODUCING BASIC / 11

Meaning of Computer Symbols
+ plus
— 1ninus
* multiply by
/ divide by
Y exponent
< less than
> greater than
< = less than or equal to
> = greater than or equal to
= equal to (or, is replaced by)
<> not equal to (this symbol is used
rather than 54 or =/)

We might wish to stop now—or maybe you have an idea for a further
refinement of the program for this problem. What if we wanted an
approximation to the nearest .0001? Would you start at, say, 2.6000 and
increment by .0001? How many calculations would be involved? (In this
case there would be 458.) What if we weren’t sure about 2.6 and started
at 2.0 as in our previous programP—Then 6,458 calculations would be
necessary. Thus the problem facing us is as follows: Can we reduce this
number of computations and comparisons in some reasonable way and
still have the computer make all the computations and decisions neces-
sary? How about changing the increment?

Study the following program carefully. This program illustrates one
possible procedure for getting an extremely accurate approximation with
a small number of calculations.

Program D,

10 Lter x=2.0

20 LETX=.1

30 rx 1t 2> 7 THEN 55
40 LET X =X + X

50 co To 30

55 1r X < .001 THEN 90
60 LETX =X —X

70 LET X = x/10

80 co 1o 30

90 PRINTX — K, (X — k) 1 2, x,x 1 2
100 Enp

RUN

12 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

Qutput
2.6457 699973 2.6458 7.00026

Do you see how this program gets a closer and closer approxi-
mation to V77 Note that we have let x be our increment; as soon as
(x + k)2 becomes greater than 7, we drop back to the value of x just
prior to the last incrementing and increase this value now by x/10. Thus
we have at most ten calculations for each of the increments of .1, .01, .001,
.0001. When x becomes .0001, what happens? We have now bounded
the approximation to the nearest ten-thousandth; and, rather than go
further, our decision statement (55) instructs the computer to go to
Statement 90, the prinT statement, Read through the program carefully
until you understand all parts, for this program represents as good a
refinement of our original problem as we will attempt in this booklet. No
new statements are introduced in Program Dy, but it is somewhat longer
and more complicated than any previously attempted.

At this point in our discussion we have noted all but two of the ele-
mentary BASIC statements. Addition of these two new statements, the
FOR . . . and NEXT . . . statements, allows us to replace many of the state-
ments in the previous programs. The new statements set up the “counter”
referred to in our discussion of loops. The FoR . . . statement enables us
to set a variable equal to some value and increment it for each successive
loop in the computer program. Consider the program statement given
below:

5 ror x == 0 10 48 STEP 2
This statement, in which sTeEP means to add an amount other than 1 (in
this case, 2) should be read as though there were a comma separating
the “48” and the “step.” It says to start with x == 0, proceed with the rest
of the program, and increment by 2 each time the computer returns to
this statement until x > 48. At some point in the program there needs to
be a statement like the following:

25 NEXT X

This tells the computer to return to the ¥or . . . statement, increment (that
is, increase x by 2 as specified), and continue with the program again.
Thus in Statement 5 the next x value will be 2, then 4, and so on. The
machine will automatically check each statement and go to the statement
that follows the NexT X statement as soon as x > 48, We can change the
increment to whatever we wish. For example, Statement 5 could be as
follows:

5 ror x == 0 1o 48 stepP .5

or

IntRODUCING BASIC / 13

5 FOR X == 0 T0 48 srep 7.25
If we wish to increment by 1, then the srep part of the statement can be
left off, and the statement becomes
5 FOR x == 0 10 4§
Remember that each ror . . . statement in a program must have an ac-
companying NeXT. . . . It is also possible to write the ror . . . statement
with variables—say 4, B, and ¢—and then let 4, B, and ¢ take on selected
values. In this case the ror . . . statement would look like the following:
5 FOR X === A TO B STEP C

The two new For . . . and NExT . . . statements can be used to replace por-
tions of Programs C and D;. An example follows, after we repeat Pro-
gram C for the sake of ready comparison.

Program C

10 LET X = 2.0

20 rx P 2> 7ruEN 50

30 LErx=x 4.1

40 co 10 20

50 rrint x — .1, (x —.1) T 2, x,x 1 2
60 ND

RUN

Output
26 676 27 729

Program D,

(Program C with FOR ..., NEXT...)

10 romr x == 2.0 To 3.0 stEP .1

20 rx 1t 2 > 7 THEN 40

30 NEXT X

40 rrnt x — .1, (x —.1) P 2, x,x T 2
50 EnD

RUN

Output
26 676 27 729

Note that in Program D, we did not want to process the entire range
of values set up in the ¥or . . . statement. Instead, we gave the computer a
rule for determining whether or not it was useful to continue processing
values by means of the For . . . statement. We did this by inserting an

i
4
!
!
¥
[

L e

14 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

IF...THEN...statement between the For. . . statement and its associated
NEXT In this way, we “jumped out of” the ¥om . . . loop before it
would ordinarily end, thereby saving computer time. It is important to
note that although we could “jump out of” the ror . . . loop, we must start
at the beginning in order to reenter the loop.

BASIC programming statements introduced thus far: PRINT . . . , END,
READ...,DATA...,GOTO...,INPUT...,LET...,IF...THEN...,

FOR ... NEXT...

In this new computer program notice how we use the FOR . . . and
NEXT . . . statements to replace three statements in the original program.
Program D,, reprinted below from page 11, offers even more of a chal-
lenge—you might wish to try to write it, using FoR. . . and NExT . . . state-
ments, before going on to the next section, so that you can compare your
results with Program Dy, a sample program using FoR . . . and NEXT. . ..

Program D,

10 LET x = 2.0

20 LETXx =1

30 iIFx * 2 > 7 THEN 55
40 LETX=x } K

50 co 10 30

55 1F x < .001 THEN 90
60 LETX =x — x

70 LET ¥ == /10

80 co 10 30

9 PRINT X — X, (x —K) 1 2, x,x 1 2
100 enp

RUN

Output .
2.6457 6.99973 2.6458 7.00026
Program D,

(Program Dy with ¥oR . . . , NuxT . . .)
10 LET x = 2.0

20 FORyJ=17104

30 LET x =10 1 (—7)
40 FOR X =X TO 3 STEP X
50 Fx M 2> 7 THEN 70

INnTrRODUCING BASIC / 15

60 NEXT X

70 LET X = x —x

80 NExT]

90 eRiINT X, X 1 2,x 4k (x+x) 12
100 Enp

RUN

Qutput
2.6457 6.99973 2.6458 7.00026

Note that in Programs D, and D; we actually are telling the com-
puter to do the same computations; however, use of the ror . . . and
NEXT . .. statements often shortens a program. Look at the program that
uses the ror . . . and nExr. . . . Do you see what is happening? First x
is set to a given value, 2, and then x is set at .1 (Statements 10, 20, and
30 in Program D; actually do this for). Then x is incremented by .1
until x2 is greater than 7. At this point the program goes to Statement
70, which sets x equal to the value just preceding the point at which the
squared quantity exceeded 7. Then the increment js changed from .1 to
.01 (this is actually 10, which is now 107%). Then the squaring and com-
paring process is again done until x2 is greater than 7 and we jump from
the loop on x to the “outside” loop on x. These two loops are referred to
as “nested loops,” which actually means a loop within a loop.

With the addition of these two new statements it is possible to
program many of the problems or algorithms in the secondary mathe-
matics curriculum.

A list of the elementary BASIC statements and the program in which
each was introduced is given in the table below. Some of the statements
are listed together, since they must both appear in the program.

Statement(s) Sample Program
PRINT . , . A, By
END
READ . . . and DATA ... Bo
GOTO. .. Ba
INPUT , . . By
LET ., . C
IF ... THEN .. . C
FOR ... and NEXT... Dy, Dy

The letters A, B, C, and D are used to name the sample programs to
 indicate levels of refinement, the Ds being the most sophisticated or
best programs.

16 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

Most computers have a stored program for finding square root. In
BASIC this square root function, generally referred to as a subroutine,
can be called in with the letters sor followed by parentheses enclosing
the number to be operated on. Thus we can eliminate all the previous
programming and merely write the following program. The output is
also given, for your information.

Program D,

10 praNT SQR(7)
20 END

RUN

Output
2.64575

E xercises

(Sample programs for all exercises in Sections I and II are given in
the concluding section of this booklet.)

1. Write a program to extend C, Dy, or Dy so that the computer will
read any value for ~ from a data list and then find the square root by
successive approximations.
Check your results in 1 above by using a BEAD . . . DATA . . . combina-
tion and the square root function.
3. Often we use an iterative process to find the square root of a number.
One iterative process is to take your first approximation for the square
root of N, call this x, and divide ~ by this approximation. Call the
quotient Q. Then average Q and x, take their average as the second
approximation, and repeat the process. Write a computer program to
do this to find /7 to four decimal places.

1o

g e s st -

- 1 T

HE following section contairs three sample problems to illustrate

further the programming techniques presented in Section I. These
problems illustrate three different mathematical settings that lend them-
selves to computer analysis. The first is from number theory and forces
the student to recall precise definitions of certain key mathematical con-
cepts in order to write the necessary computer program. The second
is a problem from advanced algebra. The last is from the area of statistics
and represents a useful program for students (or teachers) for analyzing
data. The three problems are independent of one another and can be
read in any order. At the end of each sample problem there are a few
related exercises for you to try. Answers to all will be found in the back
of this booklet.

Problem 1—Divisors of a Positive Integer

Now that we know something about the BASIC language, we will
use it to help us solve the following problem:

Let M be a positive integer, Compute the set of positive integral
divisors of M.

Let’s look at a specific value of M—say 36. The divisors of 36 are 1,
2,3,4,6,9, 12, 18, and 36. We can obtain these divisors in a very short
time by using paper and pencil. But how would we find the divisors
of 3,942? One way is to divide 3,942 by 1, 2, 3, 4, 5, and so on, each time

17

N L e, e e o B e e - i e g o e wr wesaee P M e e - [- -

18 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

examining the remainder. If the remainder is zero, then we have found
a divisor.

We will develop a BASIC program directing the computer to do
most of the work for us. To do this, we must first select variables to rep-
resent the various results of our divisions: that is, we wish to represent
the integral part of a quotient and also the remainder. For any integral
trial divisor N > 0 let us consider @ to be the integral part of m/N and
R to be the remainder, where

M R
T =t
Therefore, for any positive integer M, consider N to be any consecutive
integer from 1 to m—that is, 1,2, 3, ..., M. Since division can be checked

by multiplication, the dividend can be expressed further in terms of N,
Q, and r—specifically, M =~ * ¢ -+ R. Thus R=M — N - Q. To clarify this
notation further, consider the following example: If M = 48 and N = 5,
then @ = integral part of 48/5 —=9; R =48 — 45 = 3.

Does M =N * Q -+ 'RP

Check: 48 =35 - 9 4 3.

In this case B == 0; therefore 5 is not a divisor of 48. However, if N = 6,
then Q = integral part of 48/6 — 8, and R=48 — 6 - 8 = 0. In this case
R = 0; therefore 6 is a divisor of 48.

One approach to obtaining the set of divisors of M is to write a
BASIC program directing the computer to divide an input value of m by N
forn=1,23,..., M After each division we will have the computer
print the value of x and the value of the remainder r. Hence we can look
at the output and determine which values of N are divisors of m.

In order to obtain the required integral part of the quotient on divi-
sion of M by N, we will make use of a special function that is available to
us. This is a stored program, as was the square root function, sQr(),
described in the previous section. This is the integer function, which is
part of the BASIC language. This function can be elicited with the
notation iNT() where the expression within the parentheses is to be

operated on. If e is any algebraic expression, then INT(e) = the great-
est integer < e. For example,
INT(5) = 5. INT(5.8) =5. INT(3.6 + 2.7) = 6.
INT(—6) = —6. iNT(—6.3) = —T. INT(48/5) = 9.
NT(0) = 0. - INT(57.392) = 5T. INT(48/6) = 8.

Hence INT(M/N) is the integral part of the quotient on dividing M by n.
Now, since we are able to represent Q and R, we are ready to write
a BASIC program to find the division of a positive integer m. For our

SaMPLE PROBLEMS AND EXERrcises / 19

first program, let us consider M to be 10. The following program is one
i possible approach to this problem. :

Program E,

10 NPUT M We must first set our value for m. Then, using
a FOR ... NEXT . . . loop, we can generate our set
of trial divisors and compute the integer quotient g
Q and the remainder r (Statements 30 and 40).
50 PRINT N, R The values of N and R are printed, and the com-
60 NEXT N puter is instructed to continue this process for
65 co o 10 all trial divisors.

20 FoRN=1TO M
30 LET Q = INT(M/N)
40 LETR—=M — N * @

99 END s
’ RUN :
Output

? 10 Looking at the output, can you see which are
divisors of 107 The divisors of 10 are 1, 2, 5, and
10, since in each of these cases R — 0.

O 03O UL WO -~
OCHNWHRBRONMFROO

10
P sToP

= : Some of you may have been surprised by the computer’s ability to
understand what we meant by the expression M — N * Q in Line 40 of
the program. After all, it is possible to interpret it as either “multiply ¢
times the difference of M and N” or “subtract the product of ¥ and ¢ from
M.” How can we be sure that the computer will correctly interpret our
intentions? In cases such as this the computer has a set of rules, which it
will always follow. When parentheses are not used to indicate otherwise
(and this, also, is part of the set of rules), it will perform all exponentia-
tions first; next it will perform all multiplications and divisions, and finally
it will do all additions and subtractions. If the total number of multipli-
cations and divisions in a given expression is larger than one, then the
computer will perform the leftmost multiplication or division (regardless
of which it is) first, skip over any additions or subtractions, and perform

el

20 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

the next multiplication or division from the left. When all multiplications
and divisions are complete, this process is repeated for additions and
subtractions.

Hence in Line 40 the computer first looked for exponentiations. Find-
ing none, it looked for a multiplication or division. It found ¥ * Q and
executed the multiplication. It found no further multiplications or divi-
sions and hence looked for additions or subtractions. It found M — and the
product it had already computed, and it performed that subtraction.
Hence it found = to be the difference of M and the product of ~ times Q,
as we desired.

This same program can be rerun for the case M = 3942, The only
change necessary is in Statement 10, which will use 3942 for m. A partial
output for this program is given below.

Output
? 3942
1 0
2 0
3 0
4 2
5 2
6 0
7 1
8 6
9 0
10 2
11 4
12 6
13 3
14 8
15 12
16 6
17 15
18 0
19 9
20 2

Now we might wish to develop a more elegant procedure to generate
the set of divisors of a positive integer. Our first procedure does not
begin to tap the power of the computer! As in our square-root example,
it would be nice to have the computer make some of our decisions. Since

SAMPLE PROBLEMS AND EXERcIsgs / 21

the quantity of output can become quite excessive, as in the case for
M == 3942, it would be more efficient to include only the values of N that
are divisors of M in the output. For each such value of N, it would also be
convenient to include the quotient @ in the PRINT . . . statement. Can you
write the refined program? One possible attempt is given in Program
E. below (36 is a completely arbitrary choice for m).

Program E,

10 wpuT M

20 FORN =1 TO M

30 LET Q = NT(M/N)

40 LETR=—M — N ¥ Q

50 Fr <> 0 THEN 70 If R 5% 0, then the computer is instructed to go
60 PRINT N, Q to Statement 70, and hence the prINT . . . state-
70 NEXT N ment is skipped.

80 co Tto 10

99 END

RUN

Output
? 36

O D W =

=D WA DO

Something rather interesting occurred in the above output. Every
divisor of 36 appeared twice! In fact, all the divisors were printed in the
first six lines of output (1, 2, 3, 4, and 6 in the first column and 36, 18,
12, 9, and 6 in the second). Why did this happen? Can we take ad-
vantage of this to write a more efficient program? We can.

First, we note (it can be shown) that if we print the divisor N and
the quotient @ for each trial value of N, then we need use only the
following set of trial divisors:

{1,23,...,wnr (V)]

g Sy s segene T s S 4 ek vyt 4 e e g e e+ g ek v = -

22 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

That is, we can stop when we have reached the value of N equal to the
integral part of the square root of M. (It is interesting to note that stu-
dents in the classroom quickly come to this generalization or one very
similar to it.) For large values of M, this reduction in output represents
a tremendous savings in computer time (and cost!). We have incor-
porated this in the procedure below. (Note the use of the mreap . . .
DATA . . . statements rather than the iNput . .. ; this allows us to consider
more than one replacement for M. In this case we have M equal to 36, 42,
and 851, respectively.)

Program E

10 rReaD M

15 pPRINT M

20 ror N = 1 10 INT(SQR(M))
30 LET Q = INT(M/N)
35 LETR==M — N ¥ Q
40 1F R <> 0 THEN 60
50 PRINT N, Q

60 NEXT N

70 co To 10

80 paTa 36, 42, 851

99 EnD

RUN

Output
? 36

36 The divisors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, and
18 36.
12

ler 30 VeI e I

The divisors of 42 are 1, 2, 3, 6, 7, 14, 21, and 42.

The divisors of 851 are 1, 23, 37, and 851.

SaMpLE PROBLEMS aND EXERCISES / 23

There are still many ways to make the procedure more efficient. You
will discover some of these by working the exercises at the end of this
section.

Let us now extend the problem we have worked on thus far to con-
sider a concept frequently encountered in the upper elementary or junior
high school grades, that of finding the greatest common divisor (G.C.D.)
of two positive integers.

Let A and B be positive integers. How can we utilize the computer
to obtain the G.C.D. of 4 and 8? One way would be to print out the sets
of divisors and look at them to determine the G.C.D. Before continuing
let us establish our notation as follows:

Let p, be the set of positive integral divisors of A and pg be the set
of positive integral divisors of B. Then let c=Dps N Ds. The greatest
common divisor of A and B is the largest element of c. For example, let
A =36 and B = 42. Then

by = {1,2,3,4,6,9,12, 18, 36},
Dp = {1’2’3’6’7’1) 2 ’42}’
¢ = {1,235 6},'
. and G.C.D. = 6.
: Now, since we already have a program to generate the set of divisors

of a positive integer, let us use it to get the G.C.D. of any positive integer
A and B. Here’s how:

1. Use the program to generate the set of divisors of A (Set p4).
2. Use the program to generate the set of divisors of B (Set pg).
3. By inspection, write down the set ¢ = D4 N Dg.

4. Select the largest element of c. This is the G.C.D. of A and B.

Below is the program for A =910 and B ="798.

1 Program F

10 iNnPUT M

20 For N = 1 10 INT(SQR(M))
30 LET Q = INT(M/N)

35 LETR=M —N * Q

40 v R <> 0 THEN 60

| 50 PRINT N, Q

i ‘ 60 NEXT N

70 co To 10

99 END

RUN

R IRERIRTmI_—

94 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

Output

? 910 The value of A was given to the computer, and
1 910 the list of divisors of A was computed and printed.
9 455

5 182

7 130

10 01

13 70

14 65

2 26 35
; ? 798 The value of B was given to the computer, and

1 798 the list of divisors was computed and printed.
2 399
3 266 ;
6 133
7 114

14 57

19 42

21 38

? sToP

After getting the above output, we need only select the common divisors
from the sets. In our example the set of common divisors is

(1,27 14},

and the G.C.D. is 14.

Again we might ask ourselves: Is there a better way to do this prob-
lem? Can we get the computer to search and make the decisions $0 only
the results of concern are printed? This problem is given for you as an

exercise.

Exeycises

1. The program above causes wr(sQr(a)) to be evaluated for each
time through the loop. A square root computation is relatively time-
consuming compared to many other operations in BASIC. Rewrite the
program so that INT(SQR(M)) is computed only once at the beginning
and assigned to the variable, s. Then use s in the FoR . . . statement.

o, We have used these trial divisors:

N=123..., INT(SQR(M)).
That is, our program terminates when N > vT(sQu(M)). An equiva-

[P -

SAMPLE PROBLEMS AND EXERCISES / 25

lent condition is to terminate the procedure when N > Q. Write a
program in which this fact is used to terminate the program.

3. Write a program to determine if an input value of M is a prime num-
ber. We assume that the input value for M is an integer = 2. (A num-
ber, M, is a prime number if and only if it has exactly two distinct
divisors, 1 and »m. Hence 1 is not a prime number.) If M is prime,
print 1 and M. If M is not prime, print 1, M, and N, where N is a
divisor of M other than 1 or M.

4. Write a program for computing the G.C.D. of two positive integers,
A and B, that prints only those divisors of A and B. (Hint: Use READ 4,
B and direct the computer to print N only if N is a divisor of both
integers.)

Problem 2—Maximizing an Area

The following is an example of a well-known type of problem in-
volving a maximum value of a simple function.

A farmer has a barn 37.0 feet long with a very long single-strand
barbed wire corral on one end of the barn. He also has 525.1 feet of
barbed wire to build a new two-strand rectangular corral along the side
of the barn and extending out to the side of the old corral, using the barn
and one strand of wire from the old corral in one side of the new corral
as shown in the figure. It is then necessary to add one strand of wire from

A to E and to put two strands along each of the line segments, AB, =Bc,
and pc.

Old Single-Strand Corral Barn

A
e © © o © E D

b New Double-Strand Corral ¢

B O O 0O O O O 0.

'C

What should the dimensions of the new corral be in order for the
corral to have the greatest possible area?

If AB is x feet long and Bc is v feet long, then AE is ¥ — 37.0 feet long;
and, adding the length of one wire for AE and two wires for each other

side, we get the equation for the length of barbed wire used in the new
corral:

i
i
i
¥
i
H
H
!

26 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

2x + 2y + 2x + v — 37.0=1525.1,

y = (562.1 — 4x)/3.

The area of the new rectangular corral is A = xy, or, substituting for v
from above;

A =—XY,
562.1 — 4x
A=—X" — 3
562.1x — 4x2
A== .

3

(This is a quadratic function whose graph is a parabola opening down.)
The reader should study this carefully to be sure he understands the
derivation of this function.

The questions now become:

For what value of x (that is, length of AB) is the area of the corral
a maximum? From the graph, what is the x-coordinate of the vertex of

the parabola?

Let us consider a very simple program to solve this problem. (You
may wish to try a first attempt on your own.) A first approach might be
to input a value for x and then have the computer print x and a. The
following program illustrates this approach. Values of 50, 70, and 90
were arbitrarily selected for the sample output.

Program G,

10 vpUT X The student makes an initial guess for x.

20 pRINT X, (562.1 *x—4* x 1 2)/3
The computer prints x, the field length, and the
calculated area.

30 co To 10 The computer is instructed to return to Step 10
above for a new guess by the student.
50 END The end of the program. However, this program

never gets to the end, since Step 30 always
branches to Step 10.

Output
? 80
50 6035

? 70
70 6582.33

|
i
}
i
|
H
i
i

SaMPLE PROBLEMS AND ExERcises / 27

? 90
90 6063
P sTOP

This, of course, is a slow process, since there is a necessary wait while
the student chooses and types in data. It may also, unless the student is
a very astute guesser, take a long time to produce a nearly correct answer.

As in the earlier examples, the question is how we can improve this
program. Let us look more closely at the problem. If x = 0, then the
area is 0. If x = 1, then the area is (5621 + 1 —4 - 12)/3—that is,
558.1/3. It appears that as we choose larger values for x, the area gets
larger. But what about x very large, say 1000? Then A is negative. Thus
the area reaches a maximum value for some x, then becomes smaller until
X = 562.1/4 and the area is again 0. To verify this pattern, the reader
should refer to the output from Program G;.

For our second approach to the problem, we might have the com-
puter write out x and the area for every integral value of x in the set

{x:1 <x< 141},
since 141 > 562.1/4.

Program G,

10 For x =1 1o 141 This statement produces a loop that will be re-
peated 141 times, each time increasing x by 1.
Thus x takes on the values 1, 2, 3, . . ., 141.

20 pRINT X, (562.1 *x —4 *x 1 2)/3
The computer calculates and prints x and the
area when the length is x, for each x fromx =1
to x == 141. Each ror. .. must have a NExT. . ..

30 NEXT X Each time this step is encountered the computer
returns to Step 10, where x is increased by 1,
until the process has been completed with
x == 141. On the 141st pass the program goes on
to the statement following the NExT . .. com-
mand: in this case, Statement 40.

40 END

Part of the output

1 186.033
2 369.4
3 550.1
4 728.133

e

28 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

5 903.5
6 1076.2
7 1246.23
8 1413.6
9 15783
10 1740.33
11 1899.7
12 20564
13 221043
14 2361.8
15 25105

65 65455

66 6558.2
67 6568.23
68 6575.6
69 6580.3
70 6582.33
71 65817
72 65784
STOP

It is still not clear what value of x provides a maximum area, but the
solution must be between 69 and 71, since in this interval the value for
the area reaches a value greater than that for either 69 or 71 and begins
a continuing decrease. We.can now write a program that would search
between 69 and 71, with smaller intervals, for a better approximation of
the correct x value. This would entail only a change in the FoR . . . state-
ment. The object of this example is to design a better program to search
for x.

In the next paragraphs in this section we will set up a program that
will determine for itself the interval for the finer search and then search
it. Notice that this is quite similar to our task of narrowing down our
estimate for A/7. We can make this a continuing process so that each
search of an interval yields a new, smaller, interval for a new search with
even smaller subintervals.

o L T —

SampLE ProBLEMs AND Exercises / 29

Before considering our program, a word of caution about the prob-
lem is in order. It might have been assumed in the preceding discus-
sion that, because when x == 71 the area is less than the area when
x == 70, the maximum area would be found somewhere in the interval
70 < x < 7T1; this is not necessarily true, although it may be.

We can assume that the area function looks something like the figure
below, with s, 1, and u consecutive integers. In this example, even
though the maximum area is reached between the integers s and T, the
first noted decrease is between the integers T and u. In order to be cer-
tain that the chosen subinterval will include the maximum value for the
area, it will be necessary that the subinterval be s < x < vu. That is,
the subinterval must be two units long, these units being the last interval
where the area increases and the first interval where the area decreases.

A Maximum
y /C
\

S T U

With this information in mind, our new program should do the
following:

1. Search from x == 1 toward x == 141 looking for the first decrease
in area.

2. Type out the end coordinates (x, area) of the interval on the
curve that includes the maximum area, with the x interval two spaces
long.

3, With units one tenth as long as the units of the previous search,
the program will search the new interval (end points given above) for
a decrease in area and again type out coordinates.

4. Return to Step 3 three times, each time finding and typing the
end points of shorter and shorter subintervals containing the maximum
value of the function.

5. Stop.

Referring to the graph given earlier, then:

1. The interval of search will always be s < x < u. The first value

30 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

of s will be 1 and of u, 141; but these will change as new subintervals
are chosen.

9. r will always be the length of the subinterval into which we are
breaking su for the search. On the first search r = 1; for the second,
R = .1; on the third, .01, etc.

The final program for this problem is given below, followed by a
detailed discussion of each of the statements.

Program G

10 LT s =1

20 FOR 1=1 TO 3

30 Ler R = 10/10 1 1

40 tET A = (5621 * s —4%s 1 2)/3
50 LeT B= (562.1 * (s +R) —4* (s +=r) 1t 2)/3
60 IF B > A THEN 75

70 co 1o 110

75 LET C= A

80 LET A=—238

90 LETs=—s + R

100 co To 50

110 PRINTS — R, C,S + R, B

120 1ETS=—S —R

130 NEXT I

140 EnD

Discussion of Program G,

10 ter s =1 We will set §.= 1, since for the first search this
interval su is 1 to 141. ~
20 ror1 =1 T1O 3 This statement forms a loop that ends at Step

130. This loop will be traversed three times, the
first time through 1 = 1, the second through
1 = 2, the third through 1 = 3. (This marks the
beginning of the search of an interval.)

30 LET R — 10/10 4 1 When 1 = 1 (first time through the loop) this is
R — 10/10! or 1; when 1 = 2, R = 10/10°> = .1;
when 1 = 3, r = 10/10% = .01.

40 LET A = (5621 % s —4*s 1 2)/3
The computer calculates the value for a at the
left end of the first subinterval. Each time a new
subinterval is defined for a search, the program

B T 1 o RIS St

b b e S e Sk e

50 LET B = (562.1 * (s

60 IF B > A THEN 70

70 co To 110

75 LETC = A

80 LETA=—B

90 LETs=5s+ R

100 co 1o 50

SaMpPLE PrOBLEMS AND EXERCISES / 31

will return to this step, where the first (right-
end) value of the area will be computed. At all
other times when a left-end value for the area is
needed the old right-end value will be used and
only a new right-end value computed, in order
to save computer time.
+Rr)—4*(s+r)12)/3

The computer calculates the area at the right
end of the first interval, and the program returns
here (every time the area does not decrease) to
compute a new right end.

B is compared to A, and the computer then ex-
ecutes Step 75 if B > a; otherwise Step 70 is
executed. See Section I for other possibilities
for the 1F . . . THEN . . . statements using >, =,
etc.

When B < A we have discovered a subinterval
two units long containing the maximum value,
and the computer is instructed to go to the PRINT
. . . statement.

This is done to save a as ¢ for printing in case
it is needed as the left end of a two-unit interval,
should the next interval show a decreased area.
Statement 80 moves the interval under consid-
eration over one unit to the right by moving the
value at the right end to the left end, and s is
increased for use in the calculation of a new
right end in Step 50.

The computer now returns to calculate a new
right end. Notice that this does not affect the
loop established in Step 70, since the NEXT . ..
statement is not encountered.

110 PRINTS — R, C, S -+ R, B

The computer reaches the PRINT . . . when B < A,
The pRINT . . . includes the end coordinates of an
interval two units long containing the maximum
area. Since the value of s is now the value of x
at the left end of the one-unit-long subinterval
where the first decrease was noted, the value of
x at the left end of the two-unit-long interval will
be one subinterval back, at s — R.

32 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

120 LETS=5§ —R This statement resets the starting point of the
new, shorter, interval for the next search.
130 NEXT I The computer returns to the beginning of the

interval search. Since this is the end of a For . . .
loop, the value of 1 is incremented on the return
to Step 20, and therefore in Step 30 the length of
the subinterval is divided by 10 for the next
search. After the third pass the 1 is exhausted;
the computer will not return to Step 20 but will
go on to Statement 140, the statement following

the NEXT . . . statement.
140 END The end of the program.
Output
69 6580.3

70.2 6582.42
70.25 6582.43
71 6581.7
70.4 6582.4
7027 6582.43

Exercises

1. Rewrite the above program to find the maximum value of the function
f(x) = —4x* — 3 4 2¢ — 1.
2. Using a Fom . . . loop, write a program to evaluate the polynomial at
the following values for x : x = 1, 2, 4, 10, 30.

220

2 -3 +
f)=1+x-+5 +5+q T a0

Problem 3—Mean and Standard Deviation

Given a set of test scores, write a program to compute the mean and
standard deviation of the data.

Review: The defining formulas for the means, designated as x, and
the standard deviation, s, are given below:

N
X

(i) —x—=i=l=xl+xﬂ+xa+---+xx.

N N

G s $1 e Mg P b s 4 s Tt RY Ty it s o

ol L

SaAMPLE PROBLEMS AND EXERCISES / 33

8 MY SCORE 600D OR
BAD — ABOVE OF GELOW
AVERACE 2

N
2 (x %) D (xi—%)?

(ii) s'~’=1=l —> §= i=1
N N

(Note: When sample data are used to estimate s for a larger popu-
lation, the denominator used is N — 1 rather than n.)

Generally the following computational formula is used for s2, rather
than the definitional form given in (ii) above. This computational for-
mula can be readily derived from (ii) by expanding and simplifying,

N N 2
2
NZX;— E:Xj
i

i=—1 =1

(iii) % ==

N2
and s is the square root of this quantity.
With formulas (i) and (iii) one can compute the mean and standard

34 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

deviation by summing the values of x, and x;2 and then substituting
these summations in the appropriate formulas.

To approach the problem stated initially, we now need to write a
program to take any set of input data and perform the indicated calcula-
tions. You may wish to make an attempt at solving this problem before
reading the following discussion. Consider the scores for this problem
to be the following: 71, 65, 70, 85, 90, 95, 61, 73, 81, 88, 75, 75, 91, 66, 69.
(Your own program will probably deviate slightly from the sample that
will follow.)

To input the daia given in our problem, an appropriate technique is
to use the READ . . . and DATA . . . statements. Now you must decide what
you wish the computer to do with each data value. In this problem it
seems our first step is to sum the X’s and the x*'s; we shall call these sums
M and s, respectively. To have the computer do the summing, it is neces-
sary to start with the values of M and s each equal to zero and then in-
crease them by the appropriate x; and s,* values. At this time it is also
appropriate to input N; this can be done with a RgaD . . ., an INPUT . . .,
or a LET . . . statement. (Can you write the program now?)

Your program should look something like the following one.

Program H

10 Ler N =10 A counter N is established to enable the computer
to keep track of the number of scores in the paTa
statement.

20 LET M =0 Statements 20 and 30 set the variables M and s,

30 ters=0 arbitrary choices for variables, equal to zero.

40 READ X Now we wish to take each piece of data (in the
DATA . . . statement, 50) and do the calculations

given in Statements 70 and 80.
50 pata 71, 65, 70, 85, 90, 95, 61, 73, 81, 88, 75, 75, 91, 66, 69, 9999
(Note that 9999 is not one of our original test
scores. —The use of this value or one like it,
which is often referred to as a “flag,” will be
pointed out in the discussion of the next state-
ment.) ‘
60 1r x > = 9999 THEN 100
Statement 60 asks if the value of x has reached
the large “extra” value in the pDATA . . . statement.
In the event x =< 9999 then the computer will
continue with the next statement in the program.
If, however, x = 9999 then the computer will

SAMPLE PROBLEMS AND EXERCISES / 35

jump to Statement 100, which is the first of our
two PRINT . . . statements. The technique of in-
cluding the 9999 or some other “flag” is essential
to the program. If such a technique is not used,
the computer will automatically go to exp when
out of data in 60; that is, when asked to READ x
and there is no value left for x, the computer
will go to END.

65 LETN=N -+ 1 This increments the counter ~ by 1.

70 LETM=Xx 4+ M This statement increases M by x for each succes-
sive value of x; that is, the final M will be the
sum of the x’s.

80 LErs=x 1 2+ s Do you see what happens to sP It increases by
x* for each successive value of x. Thus the final
s will be equal to the sum of the x’s.

90 co To 40 Statement 90 sends us back to 40, where the next
value of x is read, and the interim statements are
executed again until x == 9999 is encountered.

100 pRINT M, N, “MEAN =,” M/N
Statement 100 tells the computer to pRINT M, N,
the phrase “mEAN =,” and M/~. (This is the
application of formula (i).) Note that we can
include letters or words in our output merely by
enclosing them in quotation marks in a PRINT
- . . statement. You may not wish to print out all
this information; this is up to the discretion of
the programmer.

110 PRINT §, N, “s.0. == ,” SQR((N * s — M 1 2)/(n 1 2))

Statement 110 instructs the computer to print
the values of s and N, “s.0. =,” and the square
root of the number within the parentheses. The
computations come from formula (iii). (Note
that this last caleulation could be simplified
somewhat by taking just the square root of the
numerator and dividing this by n.) The BASIC
subroutine for square root was introduced in Sec-
tion I of this booklet. Recall that to use this
function it is only necessary to use the letters sor
and insert the quantity to be operated upon
within parentheses,

The program is repeated below, and the output is given,

36 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

Program H

10 LETN =0

20 LETM =0

30 LETs =0

40 READ X

50 paTa 71, 65, 70, 85, 90, 95, 61, 73, 81, 88, 75, 75, 91, 66, 69, 9999
60 1r x > ==9999 THEN 100

65 LETN=N -1

70 LETM =X -+ M

80 LETs=x 1 2 45

90 co To 40

100 PRINT M, N, “MEAN =,” M/N

110 PRINT s, N, “s.0. ==, sQR((N * s — M 1 2)/(n 1 2))
120 Enp

Output
1155 15 wMEAN = 77
90519 15 s». = 10.2762

The above program can be easily altered for a different set of data
by rewriting Statement 60.

Exercises

1. Write a program to be used with the program already written that
will translate each raw score x, into an appropriate z-score. The
z-score translation changes the given distribution into a new distribu-

tion with mean 50 and standard deviation 10. The translational for-
mula is

2, == 10 (x' "T‘) + 50,

S.D.

Use s.0. = 10.3. (Hint: In this problem you will need to PRINT . . .
after each translation.)

2. Write a program to pRINT the sum of sets of N consecutive odd inte-
gers—thatis, 1,1 +3=4,1 4 3 4 5=09, ete.—for N =1 to 15.

HIS booklet is an introduction to the use of a problem-oriented com-

puter language in the teaching of mathematics. For the sake of
simplicity, no attempt has been made to utilize all the available features
of the BASIC language. These features are available to the reader who
wishes to refer to the manuals listed in the bibliography.

Besides BASIC there are currently in existence several other problem-
oriented computer languages. Examples of these are JOSS, TELCOMP,
ITTRAN, CUPL, ESI, CAL, INSTRUCTRAN, FORTRAN, and ALGOL.
PL1 is a new one—available to a limited extent but still under develop-
ment. The COBOL language, which is in common use, is primarily for
the business type of problems.

There are also many special program languages. LISP is especially
designed for handling lists of elements, and it is one of many such. COGO
and STRESS are languages that have been especially designed for civil
engineering problems, It is highly probable that we will see in the future
many more especially designed computer languages to solve particular
classes of problems.

“Flow charting” can also be called a language. This language is, in
essence, a systematic and reasonably complete method of outlining the
method and steps in solving a problem. It employs a sequence of boxes,
circles, and other such closed figures connected and interconnected in
such a way that the problem solution is laid out by their use. This is
accomplished by having each box contain a verbal or mathematical ex-
pression of one or more steps of the problem. This scheme has the ad-

37

38 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

vantage that it does not in any way depend on the particular machine
to be used or on any particular machine language.

Many people think of flow charting as a necessary prerequisite to
computer programming. It is certainly an aid in programming complex
mathematical problems. The degree of complexity of the problem and
the skill of the programmer help determine the extent to which flow
charts are used in problem solution.

These languages are at the very heart of what is now called com-
: puter science, which is crystallizing out as a separate discipline and
j being included in the college curriculum. Thus teachers now have an
| opportunity to receive more assistance from colleges where this disci-
pline is being incorporated. It is expected that these curricula will soon
include explicit courses for teachers.

iography

THE following bibliography is not intended to be complete. Rather,
it is given to suggest sources of information relevant to curriculum
utilization of computer systems.

Arsrecur, RoBERT L., and MARA, Wavrter. Computer M ath
for High School. Reading, Mass.: Addison-Wesley Publish-
ing Co., scheduled for publication August 1968.

ControL Data Corporation. The Teacher-Student Approach
to Computer Programming Concepts, Vols. I and II. The
Corporation, 1963.

W. H. FreemAn Anp Company. Information (a “Scientific
American” book). San Francisco: The Company, 1966.

GeneralL Erecrric Company. BASIC Language, Reference
Manual. The Company, 1967.

Introduction to Programming in BASIC: An Elemen-
tary Instruction Guide. The Company, 1967.

HorrMmAN, WarLtEer, et al. “Computers for School Mathe-
matics,” The Mathematics Teacher, LVIII (May 1965),
393-401.

Jounson, Donovan A., and Risivg, GeraLp R. Guidelines to
Teaching Mathematics. Belmont, Calif.: Wadsworth Pub-
lishing Co., 1967,

39

ik

40 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

NaTioNaL CounciL oF TEACHERS OF MATHEMATICS. Computer
Facilities for Mathematics Instruction. Washington, D.C.:
The Council, 1967.

. Computer Oriented Mathematics: An Introduction for
Teachers. Washington, D.C.: The Council, 1963.

Scaoor MatuemMATIcs STupy Group. Algorithms, Computa-
tion and Mathematics. Stanford, Calif.: Stanford University,
1965.

PRSP

wers to Exercises

Section I

Introductory Problem

Exercise 1

To extend C, the program should look like the following. Extensions for
D, and D, make use of similar changes.

Program
5 READ N Note that this program fails for ¥ < 4.
10 Ler x = 2.0 You may wish to change the LET .
20 1r x 1 2 > N THEN 50 statement to overcome this. Also, the
30 Lerx=x+.1 increment of .1 is quite small, if the
40 co T0 20 first N is something like 9980. You
50 priNT x — .1, (x—.1) 1 2, may wish to improve your program to
x,x © 2 handle this.
60 o T0 5
70 pata 7, 14, 21
80 EnD
50 prNT X — .1, (x—.1) M 2,x,x 1 2
RUN
Output
26 -~ 6.6 2.7 7.29
3.7 13.69 3.8 14.44
4.5 2025 ‘4.6 21.16

OUT OF DATA IN 5

41

42 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

Exercise 2

Program

10 READ X

20 PRINT SQR(X)
30 coTo 10

40 paTA 7, 14, 21
50 END

RUN

Output

2.64575
3.74166
4.58258
OUT OF DATA IN 10

Exercise 3

Program

10 ReaDp N
20 LeT x = 2.0
30 LET Q = N/X
40 1F x > Q THEN 70
50 1F Q — x < .0001 THEN 100
60 co To 80
70 1F x — @ < .0001 THEN 100
80 Lerx= (Q + x)/2
90 co 1o 30
100 PRINT X, Q, X *Q — N
105 co To 10
110 pata 7, 14, 21
120 enp
RUN

Output

Note the need for both Statement 50
and Statement 70. The difference be-
tween Q and x may be great but nega-
tive, and the approximation would be
such that this would be the printed
result even though incorrect.

2.64575 2.64575 —7.45058 E—9
3.74166 3.74166 —1.49012 E—8
4.58258 4.58257 —2.98023 E—8

10
15
18
20
30
35
40

50
60
70
80
99

oo
Ut B
== D WN DN DR WN M

10
15

23
OUT OF DATA IN 10

o Exercise 1

Program

READ M

PRINT M

LET § = INT (SQR (M))
FORN =1 TOS

LET Q = INT(N/N)
LETR=M — N * Q
IF R <> 0 THEN 60
PRINT N, Q

NEXT N

Gco 1o 10

DATA 36, 42, 851
END

RUN

Output
36

36
18
12
9
6

42
21
14

7

851
37

Exercise 2

Program

READ M
PRINT M

Section II

Problem 1—Divisors of a Positive Integer

ANsweRrs To Exercises / 43

44

20
25
30
35
40
45
50
55
80
99

/ INTRODUCTION TO AN ALGORITHMIC LANGUAGE

LETN=1

LET Q = INT(M/N)
IF N > Q THEN 10
LETR=M—N * Q
IF R <> 0 THEN 50
PRINT N, Q
LETN=N + 1

Go 1O 25

DATA 36, 42, 851
END

RUN

Output
36

(@]
91 W
P = O GO DO DO O GO DD

36

18

12
9 .
6

42

21

14
7

851

23 37
OUT OF DATA IN 10

Exercise 3

Program

10
15
20
25
30
35
40
45
50
55
60
65
70
80
99

READ M
IF M <>INT(M) THEN 10

IF M < 2 THEN 10

LET § = INT(SQR (M))

FORN=2 1O s

LET Q = INT(M/N)

LETR=M — N *Q

IF R = 0 THEN 65 PR v
NEXT N

PRINT 1, M

Go 1o 10

PRINT 1, M, N

Go To 10

pATA 3.7,0,1, 2, 3, 4, 15, 17

END

RUN

Output

1 2

1 3

1 4 2
1 15 3
1 17

OUT OF DATA IN 10

E xercise 4
(3 alternatives)

Exercise 44

Program

10 READ A, B

15 FORN=1TO A

20 LET Q1 = INT(A/N)
25 LETRl = A — N * gl
30 LET Q2 = INT(B/N)
35 LETR2=B — N * Q2
40 1F r1 <> 0 THEN 55
45 1Fr R2 <> 0 THEN 55
50 LETG =N

ANsWERS TO EXERcIsEs / 45

Note that no output occurred for
M = 3.7, 0, or 1, since these values
violated the conditions for input.

If both remainders are 0, then N is a
divisor of both A and B. Since N in-
creases by 1 each time, ¢ will be the
largest such divisor at the termination
of the ror . . . loop.

55 NEXT N

60 PRINT A, B, G

65 coTo 10 ‘
70 pata 45, 36, 34, 26, 50, 25, 97, 6, 25, 50
99 END

RUN

Output

45 36 9

34 26 2

50 25 25

97 6 1

25 50 25

OUT OF DATA IN 10
Exercise 4B

Program

10 READ A, B

15 FoORN=ATO 1 sTEP — 1
20 LET Q1 = INT(A/N)

25 LET Rl = A — N ¥ ql

30 LET Q2 = INT(B/N) -

35 LETR2=8 — N * Q2

40 1r *1 <> 0 THEN 50
45 1r rR2 = 0 THEN 60

Since N starts at A and then decreases
by 1 each time through the loop, the
first time that both r1 and R2 are 0 on
division by N the result will be the
desired G.c.p.

R S L - i SRt i 20+ St I aOme s a i

I

46

50
60
70
80

/ INTRODUCTION TO AN ALGORITHMIC LANGUAGE

NEXT N

PRINT A, B, N

co To 10

paTA 45, 36, 34, 26, 50, 25, 97, 6, 25, 50

99 END

RUN

Output

45 36 9
34 26 2
50 25 25
97 6 1
25 50 25

OUT OF DATA IN 10

Exercise 4C

Program

10 READ A, B

15 LETM=A

20 LETN=B

95 LET Q = INT(M/N)

30 LETR=M— N *Q
35 1r r = 0 THEN 55
40 LETM =N

45 LETN=R

50 co To 25

55 PRINT A, B, N

60 co To 10

70 pata 45, 36, 34, 26, 50, 25, 97, 6, 25, 50
99 END

RUN

OQutput

45 36 9
34 26 2
50 25 25
97 6 1
25 50 25

OUT OF DATA IN 10

Problem 2—Maximizing an Area

E xercise 1

Program

10 Lers=20
20 rori= 1710 3
30 Ler rR=10/10 1 1

40 Ler A= ((—4%s—38) *s’

45 LETP=S5s + R

50 LET B = ((-—4 " P—3) fop

B0 IF B > A THEN 75
70 co To 100

75 LET C = A

80 LET A =B

90 LETs=s + R

95 co To 45

100 PRINTS —R, C, S + R, B
120 LETS=S—R
130 NEXT I

140 END

RUN

Output

-1 0 1
3 — 5134 5
.36 — 487153 38

Exercise 2

Program

10 READ X

20 LETs=x + 1

30 terr=1

40 ror z = 2 10 20

50 LETF=F*2z

60 Lers=s +x 1 z/F
70 NEXT Z

80 PRINT X, §

90 coTo 10

100 vata 1, 2, 4, 10, 30
110 ExD

RUN

Qutput
1 2.71828

e et T

ANswgRs To ExERcises / 47

s+ 2) *s—1
The polynomial can be written in this
factored synthetic substitution form
(see Statement 40), and this reduces
the total number of operations to be
performed; an additional factor to
consider is that the computer is rela-

tively

slow in working exponentials.

We use Statement 45 to save calculat-

ing time and computing time. We

calculate P once and then use P in-

stead of s + R in Statement 50.
p+2)*p—1

- .625
— .488021

48 / INTRODUCTION TO AN ALGORITHMIC LANGUAGE

2 7.38906
4 54.5981
10 21991.5

30 3.77068 E 11
ouT OF DATA IN 10

Problem 3—Mean and Standard Deviation
Exercise 1

Program

10 ReAD X

20 prinT 10 * (x — 77)/10.3 + 50

30 co T0 10

40 paTa 71, 65, 70, 85, 90, 95, 61, 73, 81, 88, 75, 75, 91, 66, 69
50 END

RUN

Output

44,1748
38.3495
43.2039
57.767
62.6214
67.4757
34.466
46.1165
53.8835
60.6796
48.0583
48.0583
63.5922
39.3204
41.2621
OUT OF DATA IN 10

Exercise 2

(2 alternatives)

Exercise 24

Program

10 LETr s =0

20 READ X

30 parta 1,3,5,17,9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29
40 LT s=s§ -+ x

50 pPRINT §

60 co To 20

Answers T0 EXERCISES / 49

70 END
RUN

Output

1
4
9
16
25
36
49
64
81
100
121
144
169
196
225
OUT OF DATA IN 20

Exercise 2B

Program

10 LETs=0

20 ror x = 1 10 29 STEP 2
30 LETs=s + x

40 PRINT S

50 NEXT X

60 END

RUN

Output

1

4

9
16
25
36
49
64
81
100
121
144
169
196
225

